skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perry, David M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A fundamental challenge in automated reasoning about programming assignments at scale is clustering student submissions based on their underlying algorithms. State-of-the-art clustering techniques are sensitive to control structure variations, cannot cluster buggy solutions with similar correct solutions, and either require expensive pair-wise program analyses or training efforts. We propose a novel technique that can cluster small imperative programs based on their algorithmic essence: (A) how the input space is partitioned into equivalence classes and (B) how the problem is uniquely addressed within individual equivalence classes. We capture these algorithmic aspects as two quantitative semantic program features that are merged into a program's vector representation. Programs are then clustered using their vector representations. The computation of our first semantic feature leverages model counting to identify the number of inputs belonging to an input equivalence class. The computation of our second semantic feature abstracts the program's data flow by tracking the number of occurrences of a unique pair of consecutive values of a variable during its lifetime. The comprehensive evaluation of our tool SemCluster on benchmarks drawn from solutions to small programming assignments shows that SemCluster (1) generates far fewer clusters than other clustering techniques, (2) precisely identifies distinct solution strategies, and (3) boosts the performance of clustering-based program repair, all within a reasonable amount of time. 
    more » « less